Tuza’s Conjecture for graphs with maximum average degree less than 7
نویسندگان
چکیده
منابع مشابه
Tuza's Conjecture for graphs with maximum average degree less than 7
Suppose that I wish to make a graph G triangle-free by removing a small number of edges. An obvious obstruction is the presence of a large set of edge-disjoint triangles, since I must remove one edge from each triangle. On the other hand, removing all the edges in a maximal set of edge-disjoint triangles clearly makes G triangle-free. Tuza’s Conjecture states that the worstcase number of edges ...
متن کاملk-forested choosability of graphs with bounded maximum average degree
A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...
متن کاملAn oriented coloring of graphs with maximum average degree less than
An oriented k-coloring of an oriented graph G is a homomorphism from G to an oriented graph H of order k. We prove that every oriented graph with maximum average degree less than 10 3 has an oriented chromatic number at most 16. This implies that every oriented planar graph with girth at least five has an oriented chromatic number at most 16, that improves the previous known bound of 19 due to ...
متن کاملk-forested choosability of graphs with bounded maximum average degree
a proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. a graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $g$ such that each vertex receives a color from its own list. in this paper, we prov...
متن کامل8-star-choosability of a Graph with Maximum Average Degree Less than 3
A proper vertex coloring of a graphG is called a star-coloring if there is no path on four vertices assigned to two colors. The graph G is L-star-colorable if for a given list assignment L there is a star-coloring c such that c(v) ∈ L(v). If G is L-star-colorable for any list assignment L with |L(v)| ≥ k for all v ∈ V (G), then G is called k-star-choosable. The star list chromatic number of G, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2015
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2015.03.006